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The Euclidean path integrals and the 
Feynman-Dyson-Wick perturbation expansion 

Wai Bong Yeung 
Department of Physics, Queen Mary College, Mile End Road, London E l  4NS, UK 

Received 21 December 1977 

Abstract. We derive the Feynman rules for the complex I $ ~  theory using the Euclidean 
path integral formulation. 

Many years ago Feynman (1948) derived his rules for quantum electrodynamics (QED) 
using heuristic arguments. The derivations were later refined by Dyson (1949) and 
Wick (1950), but their methods were very complicated. I would like to show, in this 
short paper, how easily the Feynman rules can follow from the path integral formula- 
tion. 

I have in mind a complex 44 theory with Lagrangian 2= 
a w f t a ? f - F 2 f t 4  -g(dtf)'/4!, and I choose to look at the perturbation expansion of 

T(x1, x2, x3, x4)' ( o l T [ d t ( x l ) f t ( X 2 ) f ( X 3 ) f ( X 4 ) ] 1 0 )  

((01 here means the ground state of the theory) as an illustration. 

element 
In order to represent 7(x1, x2, x3, x4) by path integrals, I first look at the matrix 

(U' (x ) 9  T'l T [ f (x 1 >f (x2)d (x3 I f  (x4)l /U (x 1, T )  
which can be represented as (Feynman and Hibbs 1965): 

T' 

~ d i 4 1 4 * ( ~ 1 ) 4 ' ( ~ ~ > ~ ~ ~ 3 ) 4 ( x ~ )  exp(i 1 dt I dx3).  
+ ( r ' , x ) = q y x )  r 
b ( r , x ) = q ( x )  

5 
Inserting complete sets of energy eigenstates, rotating time into an imaginary axis 
( t  = -ih, TI= -iA', T = -iA), and finally letting A'+ CO, A +  --CO isolates the ground 
state contributiont: 

TE(X1, XZ,  x3, x4>'P~[u'(x>l'P,*"[a(x)] exp[ - &(A' -A)] 

+(+m.x)=rr(x) 

where E signifies the space to be Euclidean, and 'PO is the ground state functional. 

t The rotation into the imaginary axis in order to project out the ground state expectation values was 
discussed in the report by Abers and Lee (1973). Our derivation of the Feynman rules is more illuminating 
and the results are already in the momentum space. 
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Using the same tricks, we can show that 

*?[r ' (x )  ]qtE[g (x 11 e-Eo(A'-A) = J 9 [ 4 ]  exp( -m d 4 x Z E ) .  (2 1 

Hence, by combining equations (1) and (2), we obtain the Euclidean path integral 
representation of T ~ ( x ~ ,  x2, x3, x4): 

TE(Xi, X2, X3, X4) 

= [s,(-m,x)=u8(x~ 9[4i4*(Xl)4 *(x2)4 (x3)4 (x4) exp( Jim -m d 4 X ~ E ) ]  
B ( + m , x ) = d x )  

The perturbation expansion of T~ comes from the term by term integration of the 
path integrals: 

TE(Xi ,  X 2 ,  X3, X4)pert 

9 [d 14 * (X 1 )4 * (X2)d ( X 3 ) 4  (X4) 
= I * ( - m , x ) = u ' ( x )  

, (+m.x )=u(x )  

d2 x n = ~ n !  C - TgJ - 4! (4*4)2d4~)n exp[ -1 4*( -;i;i-V2+@')4 d'x]} 

1 - g  
9[41 "=On! c -(- 4! J (4*+12d4X)" 

Each term in equation (4) is Gaussian, and the path integration may be done by 
first solving the following eigenvalue problem: 

and expanding 4(x)  in terms of &(x), 

The measure 9 [ 4 ]  will then be ll:=o den. 
For the time being forget about the boundary conditions; I shall come back to this 

issue later. The obvious solutions for equation ( 5 )  are the plane waves 
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e-ikx with A i  = k 2 + k 2 =  k 2 + k : + p 2 ,  and hence d ( x )  may be expanded to give 

Equation (4) can then be written as 

T E ( X i ,  X 2 ,  X 3 ,  X4)pert  

(8) 

In the above equation integrations are replaced by summations for notational 

Everything will become clear if we evaluate the first-order contribution to 
simplicity and repeated indices are used to denote summation. 

T E ( x l ,  x 2 ,  x 3 ,  x4)pert according to (8), 

~ ~ ( ~ 1 9  ~ 2 ,  ~ 3 ,  ~ 4 g e ) r t  

i (k ,x l+k ,x2-kux3-k ,x , )  * 
sa e&, 

x S4(k, - k8 + k, - k,) e-A%ff:5)( J'64 [n de] (9) 

Because 6 is complex, it may be written as 77 eie and the measure ll d,t can be 
chosen as II 7) dv de. Then 

~ ~ ( ~ 1 3  ~ 2 ,  ~ 3 ,  x4$2rt 

= A"( 4! JOm [U? d~ de  e-A212177n77m77p7747~77877,77~ 

e-i(en +em -eu -e,+e, -eB +e,-O ) i(k,xl+k,x2-kux3-k,x,) 4 p e  S (k ,  - ks + k,  - k , ) )  

The crucial observation comes from the integration of the angular variable 8: the 
integral will be zero unless 8, + Om - 8, - 8, + 8, - O8 + 8, - 8, = 0. In other words, the 
non-vanishing contribution comes from those terms whose 8's are 'paired off'. Look- 
ing more carefully at the signs before the k's in 

S4(k - k8 + k ,  - k , )  ei(k,xl+kmx2-kux3-kqx4) 

and remembering that + B  comes from 6 and -8 comes from t*, it can be seen 
immediately that the 'pairing off' of the 8 is equivalent to the contraction between the 
creation and annihilation operators used by Wick in his derivation of the Feynman 
rules. 
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Corresponding to the employment of the normal ordered Lagrangian by Dyson 
and Wick, it is postulated that there will be no 'pairing off' of the 0 between ea, e,, 0,. 
and e,,, which come from the Lagrangian. 

The integration is then carried out using the result that 

The result in equation (11) is independent of whether some of the a, /3, y and p are 
equal. 

The factor Il:=o 27r/2J~2, is cancelled between the numerator and denominator in 
equation (lo), and, since 1 / A ;  = l / ( k Z + p 2 + w 2 )  is just the Euclidean propagator, the 
final result is 

X2r x3, x4grt  

= - i g /  

X e  

d4kl d4k2 d4k3 d4k4 1 1 1 1 ~- - -  
( 2 d 8  k: + p 2  k i  + p 2  k: +,U* kq + p 2  

(12) i(k + k 2 x z -  k , x , -  k4x4). 

This is exactly what is found if the Feynman-Dyson-Wick scheme is used (of 
course, a rotation back into the Minkowski region must be made before comparing 
with physics). 

The higher-order contributions will come out if the same arguments as before are 
used alongside the integral 

n !  
dx =- ip X2n+1 e-px2 2 P n + l '  

Thus I conclude that equation (8) is just the Gell-Mann-Low formula and that the 
perturbation expansion is simply the Feynman-Dyson-Wick expansion. 

As a final remark, consider the boundary conditions imposed in equation (5 ) .  I 
may choose d ( x )  = a ( x )  = 0, and attach a factor to each e-ik* (e' is infinitesimal 
and E' > 0 for t > 0 and E' < 0 for r < 0). In that case, I shall satisfy the right boundary 
conditions in sacrificing the orthogonality condition. A heuristic way to avoid this 
problem is to attach e-"' to e-ikx only in the determination of A t .  Then 

A; = k 2 + p 2 + ( W - i E r ) * = k z + p 2 + W 2 - i E  (14) 
This is always the propagator used. 
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